Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The deliberate addition of sulfur dioxide in the stratosphere to form reflective sulfate aerosols, reflect sunlight, and reduce surface temperatures is increasingly being considered as an option for minimizing the impacts of climate change. This strategy would create an unprecedented climate where the relationship between surface temperature and carbon dioxide concentration is decoupled. The implications of stratospheric aerosol intervention (SAI) for global crop protein concentrations have not yet been explored. While elevated CO2concentrations are expected to reduce crop protein, higher temperatures may increase crop protein concentrations. Here we report changes of maize, rice, soybean, and wheat protein concentrations under a medium emissions climate change scenario and a SAI scenario to maintain global average temperatures at 1.5 °C above preindustrial levels, as simulated by three global gridded crop models. We show that using SAI to offset surface temperature increases would create decreases in the global protein concentrations of maize and rice, with minimal impact on wheat and soybean. Some already protein-deficient and malnourished nations that rely heavily on these crops to meet protein demands would show large decreases in protein intake under SAI with the current diet pattern, which could exacerbate their nutrient scarcity. The range of results between crop models highlights the need for a more comprehensive analysis using additional crop models, climate models, a broader range of climate intervention scenarios, and advancements in crop models to better represent protein responses to climate changes.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract Climate change poses significant threats to global agriculture, impacting food quantity, quality, and safety. The world is far from meeting crucial climate targets, prompting the exploration of alternative strategies such as stratospheric aerosol intervention (SAI) to reduce the impacts. This study investigates the potential impacts of SAI on rice and wheat production in India, a nation highly vulnerable to climate change given its substantial dependence on agriculture. We compare the results from the Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection‐1.5°C (ARISE‐SAI‐1.5) experiment, which aims to keep global average surface air temperatures at 1.5°C above preindustrial in the Shared Socioeconomic Pathway 2‐4.5 (SSP2‐4.5) global warming scenario. Yield results show ARISE‐SAI‐1.5 leads to higher production for rainfed rice and wheat. We use 10 agroclimatic indices during the vegetative, reproductive, and ripening stages to evaluate these yield changes. ARISE‐SAI‐1.5 benefits rainfed wheat yields the most, compared to rice, due to its ability to prevent rising winter and spring temperatures while increasing wheat season precipitation. For rice, SSP2‐4.5 leads to many more warm extremes than the control period during all three growth stages and may cause a delay in the monsoon. ARISE‐SAI‐1.5 largely preserves monsoon rainfall, improving yields for rainfed rice in most regions. Even without the use of SAI, adaptation strategies such as adjusting planting dates could offer partial relief under SSP2‐4.5 if it is feasible to adjust established rice‐wheat cropping systems.more » « less
-
Abstract As the severity of climate change and its associated impacts continue to worsen, schemes for artificially cooling surface temperatures via planetary albedo modification are being studied. The method with the most attention in the literature is stratospheric sulfate aerosol intervention (SAI). Placing reflective aerosols in the stratosphere would have profound impacts on the entire Earth system, with potentially far‐reaching societal impacts. How global crop productivity would be affected by such an intervention strategy is still uncertain, and existing evidence is based on theoretical experiments or isolated modeling studies that use crop models missing key processes associated with SAI that affect plant growth, development, and ultimately yield. Here, we utilize three global gridded process‐based crop models to better understand the potential impacts of one SAI scenario on global maize productivity. Two of the crop models that simulate diffuse radiation fertilization show similar, yet small increases in global maize productivity from increased diffuse radiation. Three crop models show diverse responses to the same climate perturbation from SAI relative to the reference future climate change scenario. We find that future SAI implementation relative to a climate change scenario benefits global maize productivity ranging between 0% and 11% depending on the crop model. These production increases are attributed to reduced surface temperatures and higher fractions of diffuse radiation. The range across model outcomes highlights the need for more systematic multi‐model ensemble assessments using multiple climate model forcings under different SAI scenarios.more » « less
An official website of the United States government
